November 2024 g /d/(/06

AN OVERVIEW OF DATABASE PARADIGMS

NOSI-VERLD . DCMABOTE

DABDEIT DATABOIWVES =
@l
7>

DATABOTTE
 DAJABOI/ES

TOMUITHT]
DAVADMKTE

\ 00
DBRARCOASE

. o 4 3
KBIO—VALUE wome M. | @ ponwzee [N B
DATABO(SER)/ ~— DATABOVES w

R me—sensts

>~ U

TIME-5EBIES
DATABOSES

TIME-SE TETTR-SERIES
DATABOISES DATABOVES

Infroduction

Databases are critical to the operation of applications in modern computing, ranging from
small-scale web apps to massive enterprise systems. Over time, different database paradigms
have emerged, each designed to meet specific types of data, workloads, and application
needs. In this paper, we will explore the most common database paradigms, explaining how

they work and the types of applications they are most suitable for.

https://ianloe.com

November 2024

1. Relational Databases (RDBMS)

= Relational databases, or RDBMS, are the most traditional and widely used
= || database systems. These databases store data in structured tables, organised by

rows and columns. Each table has a defined schema that dictates the types of data each
column can hold, ensuring data consistency and integrity. Relational databases are known for
their use of Structured Query Language (SQL), which allows for complex querying and data
manipulation. Relationships between tables are managed through foreign keys, and data is

retrieved using joins, allowing users to link related data across different tables.

The strength of relational databases lies in their ability to manage structured data and enforce
ACID (Atomicity, Consistency, Isolation, Durability) properties. This ensures that all
transactions are processed reliably, even in cases of system failure or power loss. Relational
databases are best suited for structured data and transactional applications where data
integrity is critical. Some key use cases include:

« Financial Systems: RDBMS are widely used in banking and finance for transaction
processing, maintaining ledgers, and enforcing strict data consistency.

« Enterprise Resource Planning (ERP): ERP systems, which integrate various business
processes such as inventory management, HR, and accounting, often rely on relational
databases for organising structured business data.

+ Customer Relationship Management (CRM): Relational databases are also extensively
used in CRM systems to store and manage customer information, interactions, and transactional

data.
Examples:

MySAQL.: One of the most popular open-source relational databases, known for its ease of
use and high performance. It is widely used in web applications and smaller enterprise

systems.

PostgreSQL: An open-source relational database known for its robustness, support for

advanced data types, and full SQL compliance. PostgreSQL is often chosen for enterprise-
PostgreSQL
level applications requiring complex querying and data integrity.

https://ianloe.com

November 2024

oracte Oracle Database: A commercial relational database often used in large-scale enterprise

DATABASE

environments. It offers extensive features for transaction management, scalability, and

security.

)= Microsoft SQL Server: A popular enterprise relational database used primarily in

%ﬁSeiver environments that run on Windows. It integrates well with Microsoft tools and services,

making it a common choice for businesses already invested in the Microsoft ecosystem.

2. NoSQL Databases

B¢
BB

NoSQL databases were developed to overcome the limitations of traditional
relational databases, particularly when dealing with large-scale, unstructured, or
semi-structured data. Unlike RDBMS, NoSQL databases do not require a
predefined schema, offering greater flexibility and scalability. They can handle a

variety of data models, including key-value pairs, documents, wide-column structures, and

graphs. NoSQL databases are often used in scenarios where scalability and performance are

prioritised over strict transactional guarantees, although some NoSQL databases also offer

mechanisms for consistency and reliability.

https://ianloe.com

November 2024

Types of NoSQL Databases:

2.1 Key-Value Stores

[[==] Key-value stores are one of the simplest types of NoSQL databases, where data is stored
=D a5 a collection of key-value pairs. Each key is unique and maps to a specific value, which

can be a simple object like a string, a number, or even a more complex structure like a
list or an object. This simplicity allows key-value stores to operate with extremely high performance,
making them suitable for scenarios where quick reads and writes are required, but complex querying

is not.

In a key-value store, each entry is indexed by a unique key, and retrieval of the data associated with
that key is nearly instantaneous. Keys are typically hashed, allowing for efficient lookups, while the
values can vary widely in structure. Because of their simplicity, key-value stores typically do not support
querying the data based on the content of the value—only by its key. As a result, the applications using
these databases need to know which keys to look for in advance. Key-value stores are ideal for
applications that need to manage large volumes of simple, unstructured data where fast performance

is essential. Some common use cares are:

+ Session Management: Key-value stores are often used to store user session data in web
applications. When a user logs in, their session ID and associated data can be quickly stored and
retrieved from the database.

+ Caching: Key-value stores are frequently used as in-memory caches to reduce the load
on primary databases. For instance, a cache might store frequently accessed data (like product
details on an e-commerce website) to improve application performance.

+ Real-Time Data Processing: Applications that require real-time analytics or leaderboards

often use key-value stores to store data that changes rapidly.

Examples:

é Redis: Redis is an open-source, in-memory key-value store that is often used as a cache,
\/ message broker, or even a primary database for real-time data processing. It is known for

its ultra-fast read and write operations.

. Amazon DynamoDB: A fully managed key-value store offered by AWS, DynamoDB is
designed for high availability and scalability. It is commonly used in large-scale web

applications, loT systems, and mobile backends.

https://ianloe.com

November 2024

2.2 Document Stores

Document stores are a more flexible NoSQL model that stores data in documents,
typically using formats like JSON, BSON, or XML. Each document is a self-
/(3 contained data structure, which can include nested fields and arrays. Document

stores allow for schema flexibility, meaning that different documents within the
same collection can have different structures. This is particularly useful for applications where
the data model is likely to change over time, or where rigid schemas are impractical.

Document stores excel in situations where semi-structured data needs to be stored and

queried dynamically. Some common use cases are:

+ Content Management Systems (CMS): Document stores are ideal for applications like
CMSs, where the content (e.g., blog posts, articles, product descriptions) may have different
structures and formats. The flexibility to store various document formats makes them a natural
fit.

+ E-Commerce Catalogues: Online stores often use document stores to manage product
catalogues, where different products may have different attributes (e.g., electronics with
specifications like wattage and dimensions, clothing items with size and colour options).

« Mobile Applications: Document stores are used in mobile apps for storing user profiles,

settings, and other data that may change dynamically over time.
Examples:

‘ MongoDB: MongoDB is the most widely used document store, offering a flexible schema
and a rich query language. It is widely adopted in web and mobile applications due to its

scalability and ability to handle large volumes of unstructured data.

. Couchbase: Couchbase is a distributed document store that combines the benefits of
|=' document-oriented storage with the performance of key-value access patterns. It is

commonly used in large-scale web applications where low-latency access is required.

https://ianloe.com

November 2024

2.3 Column-Family Stores

Column-family stores, also known as wide-column stores, are designed to store

data in columns rather than rows, making them highly efficient for read-heavy

workloads. In a column-family database, data is stored in column families, where

each family groups related columns together. This model allows for efficient querying of
specific columns without having to read entire rows of data. The column-family structure is
particularly advantageous when working with sparse datasets or when data needs to be
accessed in large chunks.

These databases are often used in applications that require high write throughput and

optimised reads of specific columns. Some common uses cases include:

- Time-Series Data: Column-family stores are often used in applications that collect and analyse
time-series data, such as sensor readings from loT devices, stock prices, or performance metrics
from IT systems.

* Recommendation Engines: Column-family stores are commonly used in recommendation
systems because they can store and retrieve large amounts of sparse data efficiently, such as
user preferences or item attributes.

« Real-Time Analytics: Column-family stores are also used in applications that require high-
throughput analytics on large datasets, such as fraud detection in financial systems or monitoring

and alerting in IT systems.
Examples:

/Wg Apache Cassandra: Cassandra is a highly scalable, distributed column-family store
cassandra known for its fault tolerance and ability to handle massive datasets across multiple data
centres. It is used by companies like Netflix and Uber to manage time-series data and large-scale

applications.

% HBase: Built on top of Hadoop, HBase is another column-family store designed for real-
HEASE time read and write access to large datasets. It is often used in big data applications that

require tight integration with Hadoop’s ecosystem for analytics.

https://ianloe.com

November 2024

2.4 Graph Databases

Graph databases are specialised NoSQL databases designed to model and query

relationships between entities. In a graph database, entities are represented as

nodes, and relationships between them are represented as edges connecting
these nodes. Both nodes and edges can have properties (key-value pairs) that describe them
further. This structure allows graph databases to excel at queries that involve traversing
relationships, such as finding connections between people in a social network or identifying
the shortest path between two locations.

Graph databases are well-suited for applications where relationships between data points are
of primary importance. Some uses cases for graph databases are:

. Social Networks: Graph databases are the foundation for social networking platforms,
where users and their connections (e.g., friendships, followers) are modelled as nodes and
edges. They enable efficient querying of relationships, such as finding mutual friends or
suggesting new connections.

. Fraud Detection: In financial systems, graph databases can be used to detect fraud by
identifying unusual patterns or relationships between transactions, users, and locations.

. Recommendation Systems: Graph databases are often used in recommendation engines

to suggest products, movies, or other items based on a user’s connections or past behaviours.

Examples:

Neodj: Neodj is the most popular graph database, used in applications like social
networking, fraud detection, and recommendation engines. It offers a powerful query

language (Cypher) for navigating relationships and patterns in the data.

Amazon Neptune: Amazon Neptune is a fully managed graph database service offered

by AWS. It supports both property graphs and RDF (Resource Description Framework)

models, making it a versatile solution for graph-based applications.

https://ianloe.com

November 2024

3. In-Memory Databases

In-memory databases store data directly in the system’s main memory (RAM),
allowing for much faster access times compared to disk-based storage systems.

o000 Because of their speed, in-memory databases are often used in scenarios where
low-latency performance is critical, such as real-time analytics or caching. These databases
typically load data into memory and use backups or replication to disk to ensure persistence

in case of a failure.

In-memory databases are particularly useful for high-performance applications that require
rapid data retrieval but he trade-off for this speed is that in-memory databases are limited by

the amount of available memory, though modern systems often support horizontal scaling to

overcome this limitation. Some common Use Cases are:

« Real-Time Analytics: In-memory databases are often used in analytics platforms where data
needs to be processed and queried in real time, such as in high-frequency trading platforms or
monitoring systems.

« Session Management: In-memory databases are also frequently used for session storage in
web applications, where user session data needs to be accessed and updated rapidly.

+ Gaming Leaderboards: In the gaming industry, in-memory databases are used to maintain

real-time leaderboards, tracking player rankings and scores with minimal delay.
Examples:

SAP HANA: An enterprise-grade in-memory database that supports transactional and
SAPG

analytical processing. It is widely used in ERP, supply chain management, finance, and loT

solutions, providing real-time data insights and high-speed processing.

Memcached: Memcached is another popular in-memory key-value store, commonly used
b4 as a caching layer to improve the performance of web applications by storing frequently

accessed data in memory.

https://ianloe.com

November 2024

4. Time-Series Databases (TSDB)

A Time-series databases are designed to handle data that is time-stamped or time-

- ordered, such as sensor data, financial data, or log files. These databases are

optimised for high-write throughput, allowing them to efficiently store and retrieve
large volumes of time-series data. Time-series databases also provide specialised functions
for querying and analysing time-based data, such as calculating trends, rolling averages, or
forecasting.

The strength of time-series databases lies in their ability to handle data that changes over time
and to enable queries that aggregate, or filter based on time intervals. They are widely used

in the following scenarios:

« loT Applications: Time-series databases are commonly used in loT environments to track
sensor data over time, such as temperature, humidity, or energy consumption readings.

« Financial Data Tracking: In the finance industry, time-series databases are used to track
stock prices, market data, and other financial metrics, allowing for fast analysis and trend
forecasting.

+ System Monitoring: TSDBs are used in IT monitoring systems to collect performance metrics
such as CPU usage, memory consumption, and network traffic, enabling real-time alerting and

historical analysis.

Examples:

InfluxDB: InfluxDB is one of the most popular open-source time-series databases, used for
monitoring systems, loT, and real-time analytics. It offers powerful time-based querying and

aggregation capabilities.

Prometheus: Prometheus is a time-series database designed for monitoring and alerting,

often used with Kubernetes and other cloud-native infrastructure. It collects metrics and

provides real-time monitoring for system health and performance.

https://ianloe.com

November 2024

5. NewSQL Databases

@, NewSQL databases attempt to combine the scalability and flexibility of NoSQL
E - 7 databases with the strong consistency and ACID guarantees of traditional
P relational databases. NewSQL systems are designed for distributed, cloud-native
environments and can handle the high transaction rates required by modern applications.
Unlike traditional RDBMS, NewSQL databases are horizontally scalable, allowing them to

manage large workloads across multiple servers while still ensuring transactional integrity.

These databases are best suited for applications that require both the reliability of relational
databases and the scalability of distributed systems. Common use cases include

« Cloud-Native Applications: NewSQL databases are often used in cloud-native applications
where scalability and availability are critical, but strong consistency is also required.

- Financial Applications: Many financial applications require the scalability to handle high
transaction rates while ensuring consistency and reliability, making NewSQL databases a good
fit.

« Enterprise Systems: NewSQL databases are commonly used in large enterprise systems that
need to scale to accommodate high traffic while ensuring data accuracy and consistency across

distributed environments.
Examples:

CockroachDB: CockroachDB is a cloud-native NewSQL database designed for horizontal
ai; scaling and distributed architectures. It is used in large-scale applications requiring strong

consistency, such as financial systems and cloud-based services.

Google Spanner: Google Spanner is a globally distributed, strongly consistent NewSQL
database that offers high availability and scalability. It is used by enterprises requiring

globally consistent transactions, such as in financial or inventory systems.

.= VolItDB: VoltDB is an in-memory NewSQL database that supports high-speed transaction

Y
e processing and real-time analytics. It is used in telecommunications, financial services, and

loT applications.

https://ianloe.com

November 2024

6. Object-Oriented Databases (OODBMS)

Object-oriented databases store data in the form of objects, similar to how data is
represented in object-oriented programming languages like Java or C++. This

allows for a seamless mapping between the application and the database, as
objects in the database can directly correspond to objects in the application code. Object-
oriented databases support features like inheritance, polymorphism, and encapsulation, which
are core principles of object-oriented programming.

These databases are particularly useful for applications with complex data models. By allowing
developers to store objects directly in the database, they provide a natural and efficient way to

handle complex relationships and behaviours in the data. Some examples use cases are:

« CAD/CAM Systems: Object-oriented databases are often used in computer-aided design
(CAD) and manufacturing (CAM) systems, where complex models and relationships between
objects need to be stored and manipulated.

« Simulation Systems: In scientific and engineering simulations, OODBMS are used to store
and manage large datasets representing real-world entities and their interactions.

« Multimedia Applications: Object-oriented databases are also used to store multimedia
content, such as video, audio, and images, along with the metadata and relationships between

media assets.
Examples:

dbl|.0 db4o: db4o is an open-source object-oriented database designed for Java and .NET
applications. It is known for its ease of use and ability to integrate directly with object-oriented

programming languages. Since 2008 it is owned by Versant.

ObjectDB: ObjectDB is an object-oriented database for Java, offering support for both JPA
(Java Persistence API) and JDO (Java Data Objects). It is used in applications that require

complex data modelling and high-performance querying.

VERANT Versant: Versant is a commercial object-oriented database designed for handling large-

scale enterprise applications with complex object models, such as CAD/CAM and multimedia systems.

https://ianloe.com

November 2024

7. Vector Databases

- Vector databases are a new class of databases specifically designed to store and
% search high-dimensional vectors. These vectors are typically generated by
machine learning models, representing complex data such as images, text
embeddings, or other Al-driven outputs. Vector databases are essential for similarity search,

where the goal is to find data points that are close to each other in high-dimensional space.

These databases are particularly useful in Al and machine learning applications where
searching for patterns or similarities in large datasets is required. Examples use cases are:

« Recommendation Engines: Vector databases are commonly used in recommendation
systems to find items (e.g., movies, products) that are similar to a user’s preferences based on
vectorised data.

« Image Search: In image recognition and search applications, vector databases are used to
store and search embeddings generated from images, enabling the identification of similar
images based on their vector representations.

« Natural Language Processing (NLP): Vector databases are used in NLP applications to

store word or sentence embeddings, enabling semantic search and language understanding.

Examples:

K"a Pinecone: Pinecone is a fully managed vector database optimised for similarity search in
N 9 Al and machine learning applications. It is commonly used in recommendation systems,

semantic search, and NLP.

Weaviate: Weaviate is an open-source vector search engine that allows for the storage
and retrieval of data using machine learning models. It is often used in applications requiring

semantic search and knowledge graph integration.

Milvus: Milvus is an open-source vector database designed for high-performance similarity

mivus Search, used in Al, image recognition, and natural language processing applications.

. Vespa: Vespa is a real-time serving platform that combines vector search with document
retrieval. It is used in large-scale Al-driven applications such as recommendation engines

and search engines.

https://ianloe.com

November 2024

8. Multimodal Databases

Multimodal databases support multiple data models within a single database

% system. This allows developers to work with various types of data (e.g.,

relational, document, graph, key-value) in one platform, rather than using

multiple separate databases. These systems provide flexibility and efficiency for applications
that require a combination of data types and querying methods.

These hybrid databases are particularly useful for organisations with diverse data needs, as
they allow for the storage of structured, semi-structured, and unstructured data in one place.

Some examples are:

* loT Systems: In loT applications, multimodal databases can store structured sensor data
alongside unstructured metadata and relationships between devices, providing a unified platform
for data management.

+ E-Commerce Platforms: Multimodal databases allow e-commerce systems to handle a
variety of data types, from structured order and inventory data to unstructured customer reviews
and product descriptions, in a single database.

* Financial Services: Financial applications often require the storage of transactional data,
document-based contracts, and graph-based relationships (e.g., between accounts and

transactions). A multimodal database can efficiently manage these diverse data types.

Examples:

@ ArangoDB: ArangoDB is a multi-model database that supports document, graph, and key-
ArangoDB
ange value data models. It is commonly used in applications that require diverse data models,

such as |loT and social networking systems.

“Marklogic MarkLogic: MarkLogic is a multimodal database that supports documents, triples (for
semantic data), and relational data. It is often used in enterprise applications that require a unified

approach to handling diverse data types.

, Azure Cosmos DB: Azure Cosmos DB is a globally distributed multimodal database
2V service that supports multiple APIs, including SQL, MongoDB, Cassandra, and Gremlin
(graph). It is used in cloud-native applications that need to handle diverse workloads in a globally

scalable environment.

https://ianloe.com

November 2024

Comparison of Database Paradigms

Here is a quick summary comparison of the various database paradigm that was covered

earlier:

Paradigm

Data Structure

Key Strengths

Strong consistency

Best Use Cases

+ Financial systems
+ ERP

value)

Relational (RDBMS) Tables complex queries (SQL) - transactional apps
ACID compliance
. + Big data
Documents Scalability . regl-time analytics
NoSQL Key-Value Flexibility _ e loT
Graph fast reads/writes . e-commerce
Ultra-fast data access (F;ea:]-.’ume apps
In-Memo Key-Value aching
ry Tables . Leac_lerboards
* gaming
Optimised for time-series :\a-(l)-nitorin 9
Time-Series Time-stamped data « financial data
high write throughput « metrics
Distributed transactions) gé%ﬂg;??;rllvse
NewSQL Tables scalability + ACID . large-scale
enterprise systems
. . . * Multimedia systems
Object-Oriented Obiect Object relationships . simulation
(OODBMS) bjects complex structures . CAD/CAM
High-dimensional search géﬁ;i@ﬂfﬁ&ns
Vector Databases Vectors fast similarity queries engines
« NLP
. * loT
Multiple models Verlf‘_a}'“ty dels « finance
. (tables, graphs, mulliple models in one * e-commerce
Multimodal Databases documents, key- system . multi-model

enterprise apps

https://ianloe.com

November 2024 g AZ/(Zﬂ&

Conclusion

Each database paradigm is designed to excel in specific use cases, catering to distinct data
models and performance demands. Relational databases continue to serve as the backbone
for applications requiring transactional consistency and structured data management.
Meanwhile, NoSQL databases offer the flexibility and scalability needed to handle unstructured
and semi-structured data, making them ideal for modern, large-scale applications. In-memory
and time-series databases deliver the speed and efficiency crucial for real-time processing,

where rapid access and analysis of data are paramount.

As database technologies evolve, new paradigms like vector databases and multimodal
databases are pushing the boundaries of what can be achieved with complex, unstructured,
and large-scale data. These advanced databases are addressing challenges that traditional
systems struggle with, such as semantic search, high-dimensional similarity, and supporting

diverse data types under a unified framework.

For developers and organisations, selecting the right database is now more about aligning the
technology with specific performance, scalability, and data model needs. The decision is no
longer just about data structure—it involves a deep understanding of how each paradigm
addresses real-world challenges in terms of speed, scale, and adaptability. Mastering the
strengths and limitations of these paradigms is crucial for building robust, future-proof systems

that meet the evolving demands of modern applications.

DN: email=ian@ianloe.net
Date: 2024.10.31 10:59:50
+08'00'

		2024-10-31T10:59:50+0800

